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ABSTRACT
We pose a new and intriguing question motivated by dis-
tributed computing regarding random walks on graphs: How
long does it take for several independent random walks,
starting from the same vertex, to cover an entire graph?
We study the cover time–the expected time required to visit
every node in a graph at least once–and we show that for a
large collection of interesting graphs, running many random
walks in parallel yields a speed-up in the cover time that
is linear in the number of parallel walks. We demonstrate
that an exponential speed-up is sometimes possible, but that
some natural graphs allow only a logarithmic speed-up. A
problem related to ours (in which the walks start from some
probabilistic distribution on vertices) was previously studied
in the context of space efficient algorithms for undirected s-
t-connectivity and our results yield, in certain cases, an im-
provement upon some of the earlier bounds.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous

General Terms
Algorithms, Theory
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Random Walks, Cover Time, Speed-up, Distributed Algo-
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1. INTRODUCTION
Consider the problem of hunting or tracking on a graph.

The prey begins at one node, the hunters begin at other
nodes, and in every step each player can traverse an edge
of the graph. The goal is for the hunters to locate and
track the prey as quickly as possible. What is the best al-
gorithm for the hunters to explore the graph and find the
prey? The answer depends on many factors, such as the
nature of the graph, whether the graph can change dynam-
ically, how much is known about the graph, and how well
the hunters can communicate and coordinate their actions.
Graph exploration problems such as this are particularly in-
teresting in changing or unknown environments. In such
environments, randomized algorithms are at an advantage,
since they typically require no knowledge of the graph topol-
ogy.

Random walks are a natural and thoroughly studied ap-
proach to randomized graph exploration. A simple random
walk is a stochastic process that starts at one node of a
graph, and at each step moves from the current node to
an adjacent node chosen randomly and uniformly from the
neighbors of the current node. A natural example of a ran-
dom walk in a communication network arises when messages
are sent at random from device to device. Since such algo-
rithms exhibit locality, simplicity, low-overhead, and robust-
ness to changes in the graph structure, applications based
on random walks are becoming more and more popular. In
recent years, random walks have been proposed in the con-
text of querying, searching, routing, and self-stabilization in
wireless ad-hoc networks, peer-to-peer networks, and other
distributed systems and applications [17, 31, 12, 30, 8, 21,
1, 10].

The problem with random walks, however, is latency. In
the case of a ring, for example, a random walk requires an
expected Θ(n2) steps to traverse a ring, whereas a simple
traversal requires only n steps. The time required by a
random walk to traverse a graph, i.e., the time to cover
the graph, is an important measure of the efficiency of ran-
dom walks: The cover time of a graph is the expected time
taken by a random walk to visit every node of the graph at
least once [5, 2]. The cover time is relevant to a wide range
of algorithmic applications [21, 32, 23, 8], and methods of
bounding the cover time of graphs have been thoroughly in-
vestigated [28, 3, 15, 13, 34, 27]. Several bounds on the cover
time of particular classes of graphs have been obtained, with
many positive results [15, 13, 24, 25, 16].



The contribution of this paper is proposing and partially
answering the following question: Can multiple random walks
search a graph faster than a single random walk? What is
the cover time for a graph if we choose a node in the graph
and run k random walks simultaneously from that node,
where now the cover time is the expected time until each
node has been visited at least once by at least one random
walk?

The answer is far from obvious. Consider, for example,
running k random walks simultaneously on a ring. If we
start all k random walks at the same node, then the random
walks have little choice but to follow each other around the
ring, and it is simply a race to see which of them completes
the trip first. We prove in Section 6 that on a ring the cover
time for k random walks is only a factor of Θ(log k) faster
than the cover time for a single random walk. On the other
hand, there are graphs for which k random walks can yield a
surprising speed-up. Consider a “barbell” consisting of two
cliques of size n joined by a simple path (see Figure 1 in
Section 7). The cover time of such a graph is Θ(n2) and
its maximum is obtained when starting the walk from the
central point of the path. In this graph, the bells on each
end of the barbell act as a sink from which it is difficult
for a single walk to escape, but if a logarithmic number of
random walks start at the center of the barbell, each bell
is likely to attract at least one random walk, which will
cover that part of the graph. We prove in Section 7 that
if we run k = O(log n) random walks in parallel, starting
from the center, then the cover time decreases by a factor
of n from Θ(n2) to O(n), which corresponds to a speed-up
exponential in k.

The main result of this paper—summarized in Table 1—is
that, in spite of these examples, a linear speed-up is possible
for almost all interesting graphs as long as k is not too big.
In Section 4, we prove that if there is a large gap between
the cover time and the hitting time of a graph, where hit-
ting time is the expected time for a random walk to move
from u to v for any two nodes u and v in the graph, then k
random walks cover the graph k times faster than a single
random walk for k sufficiently small (see Theorems 4 and 5).
Graphs that fall into this class include complete graphs, ex-
panders, d-dimensional grids and hypercubes, d-regular bal-
anced trees, and several types of random graphs. In the
important special case of expanders, we can actually prove
a linear speed-up for k ≤ n and not just k ≤ log n. While
we demonstrate a relationship between the cover time and
the hitting time, we also demonstrate a relationship between
the cover time and the mixing time (see Theorem 9), which
leads us to wonder whether there is some other property of a
graph that characterizes the speed-up achieved by multiple
random walks more crisply than hitting and mixing times.

There are many open problems to consider. Returning to
our opening example of hunters tracking prey on a graph,
for the sake of performing an analysis, our results essentially
assume that the hunters all start on the same node and that
the prey does not move. We believe the qualitative nature of
our results continues to hold when hunters start on different
nodes (a problem considered in part in [14, 11, 20]), but it is
an interesting question to consider how the prey’s movement
might affect our results. Furthermore, our solution implic-
itly assumes that the hunters have no way to communicate
or coordinate their movements and do not make use of any
“breadcrumbs” left behind at a node by one hunter to pro-

vide feedback to other hunters visiting the same node later.
In an ad-hoc wireless network, for example, allowing limited
(possibly) unreliable communication among nearby hunters
might change the analysis in interesting ways. Finally, one
of our motivations for considering randomization in the first
place was the unknown nature of the graph, but the more
powerful motivation was the general desire for robust algo-
rithms in the face of a dynamically changing graph. There
are many interesting ways to formulate this problem, and
actually analyzing the performance of concurrent random
walks in dynamic networks would be in itself an interesting
problem.

1.1 Related work
A related problem was previously studied in the context of

algorithms for solving undirected s-t connectivity, the prob-
lem of deciding whether two given vertices s and t are con-
nected in an undirected graph. The key step in many of
these algorithms is to identify large subsets of connected ver-
tices and to shrink the graph accordingly. The algorithms
use short random or pseudorandom walks to identify such
subsets. These walks are either starting from all the vertices
of G or from a suitably chosen sample of its vertices. De-
terministic algorithms concerned with the amount of used
space [29, 7] use pseudorandom walks started from all the
vertices of G. Parallel randomized algorithms, e.g., [26, 22],
use short random walks from each vertex of G. Although
there seems to be a deeper connection to our problem, these
techniques do not seem to provide any results directly re-
lated to our question of interest.

However, a problem closer to ours is considered in a se-
quence of papers on time-space trade-offs for solving s-t-
connectivity [14, 11, 20]. Algorithms in this area choose
first a random set of representatives and then perform short
random walks to discover connectivity between the repre-
sentatives. A part of the analysis in [14] by Broder et al. is
calculating the expected number of steps needed to cover the
whole graph. Indeed, Broder et al. state as one of their main
results that the expected number of steps taken by k random
walks starting from k vertices chosen according to the sta-

tionary distribution to cover the whole graph is O(m2 log3 n
k2 ),

where m is the number of edges and n is the number of ver-
tices of the graph [14]. Barnes and Feige in [11, 20] consider
different starting distributions that give a better time-space
trade-off for the s-t-connectivity algorithm but they do not
state any explicit bound on the cover time by k random
walks. In contrast, in this work, we formulate our interest
in comparison between the expected cover time of a single
walk and of k random walks.

Although our work focuses on covering the graph starting
from a single vertex, under certain conditions our results
yield improved bounds on the cover time starting from the
stationary distribution. In particular, for graphs with fast
mixing time, Lemma 19 yields the bound O((n log n)/k) on
the cover time of k random walks starting from the sta-
tionary distribution on an expander and the proof of Theo-
rem 9 gives bound O((ntm log2 n)/k) on the cover time of k
random walks starting from the stationary distribution on
graphs with mixing time tm. Indeed, our proofs in Section 4
do not depend on the starting distribution so similar results
can be stated for k walks starting from an arbitrary proba-
bilistic distribution.



Table 1: Results summary (for any constant ǫ > 0)
Graph family name Cover time Hitting time Mixing time Speed up Sk (order)

C hmax tm lower bound upper bound

cycle n2/2 n2/2 O(n2) log(k) log(k)

2-dimensional grid Θ(n log2 n) Θ(n log n) Θ(n) k, k < O(log1−ǫ n)

d-dimensional grid, d > 2 Θ(n log n) Θ(n) Θ(n2/d) k, k < O(log1−ǫ n)

hypercube Θ(n log n) Θ(n) log n log log n k, k < O(log1−ǫ n)
complete graph Θ(n log n) Θ(n) 1 k, k < n k, k < n
expanders Θ(n log n) Θ(n) log n Ω(k), k < n

E-R Random graph Θ(n log n) Θ(n) log n k, k < O(log1−ǫ n)

2. PRELIMINARIES
Let us begin with a quick review of asymptotic nota-

tion, like o(1), as used in this paper: f(n) = O(g(n)) if
there exist positive numbers c and N , such that f(n) ≤
cg(n),∀n ≥ N . f(n) = Ω(g(n)) if there exist positive num-
bers c and N , such that f(n) ≥ cg(n),∀n ≥ N . f(n) =
Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)). f(n) =
o(g(n)) if limn→∞ f(n)/g(n) = 0 and f(n) = ω(g(n)) if
limn→∞ f(n)/g(n) = ∞.

Let G(V, E) be an undirected graph, with V the set of
nodes and E the set of edges. Let n = |V | and m = |E|.
For v ∈ V , let N(v) = {u ∈ V | (v, u) ∈ E} be the set of
neighbors of v, and let δ(v) = |N(v)| be the degree of v. A δ-
regular graph is a graph in which every node has degree δ.

Let Xi = {Xi(t) : t ≥ 0} be a simple random walk starting
from node i on the state space V with transition matrix Q.
When the walk is at node v, the probability to move in the
next step to u is Qvu = Pr(v, u) = 1

δ(v)
for (v, u) ∈ E and 0

otherwise.
Let τi(G) of a graph G be the time taken by a simple

random walk starting at i to visit all nodes in G. For-
mally τi = min{t : {Xi(1), . . . , Xi(t)} = V } and clearly
this is a stopping time and therefore a random variable. Let
Ci = E[τi] be the expected number of steps for the sim-
ple random walk starting at i to visit all the nodes in G.
The cover time C(G) of a graph G is defined formally as
C(G) = maxi Ci. The cover time of graphs and methods of
bounding it have been extensively investigated [28, 3, 15, 13,
34, 5], although much less is known about the variance of
the cover time. Results for the cover time of specific graphs
vary from the optimal cover time of Θ(n log n) associated
with the complete graph Kn to the worst case of Θ(n3) as-
sociated with the lollipop graph [19, 18].

The hitting time, h(u, v), is the expected time for a ran-
dom walk starting at u to arrive to v for the first time.
Let hmax be the maximum h(u, v) over all ordered pairs of
nodes and let hmin to be defined similarly. The following the-
orem provides fundamental bound on the cover time C(G)
in terms of hmax and hmin.

Theorem 1 (Matthews’ Theorem [28]). For any graph G,

hmin · Hn ≤ C(G) ≤ hmax · Hn

where Hk = ln(k) + Θ(1) is the k-th harmonic number.

Notice that this bound is not always tight, since in the
line, for example, we have C(G) = hmax.

For an integer t > 0, a graph G and its vertices u and v,
let pt

u,v be the probability that a simple random walk start-
ing from vertex u is at vertex v at time t and let π(v) denote
the probability of being at v under the stationary distribu-
tion of G. By mixing time tm of G, we understand the

smallest integer t > 0 such that for all vertices u in G,
P

v |pt
u,v − π(v)| < 1/e.

2.1 k-Random Walks: Cover Time and Speed-
up

Let us turn our attention to the case of k parallel inde-
pendent random walks. We assume that all walks start from
the same node and we are interested in the performance of
such a system. The natural extension to the definition of
cover time is the k cover time: Let τk

i be the random time
taken by k simple random walks, all starting at i at t = 0,
to visit all nodes in G (i.e., the time by which each node has
been visited by at least one of the walks). Let Ck

i = E[τk
i ]

be the expected cover time for k walks starting from i. For
a graph G, let Ck(G) = maxi Ck

i (G) be the k-walks’ cover
time. In practice, we would like to bound the speed-up in
the expected cover time achieved by k walks:

Definition 2. For a graph G and an integer k > 1, the
speed-up, Sk(G), on G, is the ratio between the cover time
of a single random walk and the cover time of k random

walks, namely, Sk(G) = C(G)

Ck(G)
.

Note that speed-up on a graph is a function of k and of
the graph. When k and/or graph is understood from the
context we may not mention them explicitly.

3. STATEMENT OF OUR RESULTS
We show that k random walks can cover a graph k times

faster than a single random walk on a large class of graphs, a
class that includes many important and practical instances.
We begin with a simple statement of linear speed-up on sim-
ple graphs, but as we broaden the class of graphs considered,
our statements of speed-up become more involved. We begin
with a linear speed-up on cliques and expanders:

Theorem 3. For k ≤ n and for a graph G that is either a
complete graph on n vertices or an expander the speed-up is
Sk(G) = Ω(k).

We can show a linear speed-up on other graphs, as well, but
to do so we must bound k, the number of random walks.
Which bound we use depends on Matthews’ bound.

When Matthews’ bound is tight, we can prove a linear
speed-up for k as large as k ≤ log n. Our proof depends
on a generalization of Matthews’ bound for multiple ran-

dom walks: Ck(G) ≤ e+o(1)
k

· hmax · Hn (see Theorem 13).
Since Matthews’ bound is known to be tight for the complete
graph, expanders [15], d-dimensional grids for d ≥ 2 [15], d-
regular balanced trees for d ≥ 2 [33], Erdős-Rényi random
graphs [16], and random geometric graphs [9] (in the last



two cases, for choice of parameters that guarantee connec-
tivity with high probability), the following result shows that
k ≤ log n random walks yield a linear speed-up for a large
class of interesting and useful graphs:

Theorem 4. If C(G) = Θ(hmax log n), then Sk(G) = Ω(k)
for all k ≤ log n.

When Matthews’ bound is not tight, we must proceed
more indirectly and bound k in terms of the gap. Let g(n) =

C
hmax

be the gap between the cover time and the maximum
hitting time. We find it remarkable that, using this gap,
we can prove a nearly linear speed-up for k less than g(n)
without knowing the actual cover time.

Theorem 5. If g(n) = C(G)
hmax

→ ∞ and k ≤ O(g1−ǫ(n)) for

some ǫ < 1, then Ck(G) = C(G)
k

+ o(C(G)
k

), and Sk(G) ≥
k − o(k).

These results raise several interesting questions about speed-
ups on graphs in general: is k an upper bound on the best
possible speed-up, does proving a linear speed-up generally
require bounding k, and what really characterizes the best
possible speed-up?

For the first question, we have been unable to prove that k
is an upper bound on the best possible speed-up. We do
know that a wide range of speed-ups is possible, and that
sometimes the speed-up can be much less than k. The fol-
lowing result shows that the speed-up on a cycle is limited
to log k.

Theorem 6. For all k < en/4, the speed-up on the cycle Ln

with n vertices is Sk(Ln) = Θ(log k).

On the other hand, it is possible there are graphs for which
the speed-up is much more than k. For example, the follow-
ing result shows that, when the walk starts at the node in
the center of the barbell graph (we cannot prove this is true
from other nodes in the graph), the speed-up is exponential
in k:

Theorem 7. For a barbell graph Bn on n vertices (see Sec-
tion 7 for a definition) if vc is the center of the barbell then
Cvc = Θ(n2) but Ck

vc
= O(n) for k = Θ(log n).

For the second question, proving a linear speed-up in gen-
eral does indeed require bounding k. In fact, the situation
turns out to be rather complex, since the speed-up depends
not only on the graph itself, but also on the relationship
between the size of the graph and k. For example, using
Theorem 6, we can show that there may be a full spectrum
of speed-up behaviors even for a single graph:

Theorem 8. Let G be a two dimensional
√

n×√
n grid on

the torus (for which Matthews’ bound is tight).

1. For k ≤ log n, the speed-up is Sk(G) = Ω(k)

2. For k ≥ log3 n the speed-up is Sk(G) = o(k).

Finally, what property of a graph determines the speed-
up? We do not have a complete answer to this question.
We are able to relate the speed-up on a graph to the ratio
between cover time of the graph and the maximal hitting
time of the graph as seen in Theorem 5 and further also to
the mixing time of the graph. Intuitively if a graph has a
fast mixing time then the random walks spread in different
parts of the graph and explore it essentially independently.

Theorem 9. Let G be a d-regular graph. If the mixing time
of G is tm then for k ≤ n the speed-up is Sk = Ω( k

tm ln n
)

To this end, questions regarding minimal and maximal bounds
on the speed-up as a function of k remain open, but we do
conjecture that speed-up is at most linear and at least of
logarithmic order:

Conjecture 10. For any graph G and any k ≥ 1, Sk(G) ≤
O(k).

Conjecture 11. For any graph G and any n ≥ k ≥ 1,
Sk(G) ≥ Ω(log k).

4. LINEAR SPEED-UP
Linear speed-up in a clique follows from folklore, and we

will show linear speed-up in an expander in Section 4.1; we
begin by stating the simple example for later use:

Lemma 12. For k ≤ n and a clique Kn of size n the speed-
up is Sk(Kn) = k (up-to a rounding error).

Proof. In the lemma we restrict k to be less than n to avoid
rounding problems and for simplicity we also assume self
loops in the clique. We will prove this using a coupon col-
lector argument. Let C be the number of purchases needed
to collect n different coupons. Consider the case where a
fair mom decides to help her k kids to collect the coupons.
Each time she buys a cereal and gets a coupon she gives it
to the next-in-turn son in a round-robin fashion (i.e. kid
i mod k gets the coupon from step i). Clearly, in expec-
tation, after C visits to the grocery store mom got all the
different coupons. Note that each child had his own inde-
pendent coupon collecting process, and each have the same
number of coupons (plus-minus one). 2

We now show a linear speed-up in a much larger class of
graphs, as long as k ≤ log n. We begin with Matthews’
upper bound C(G) ≤ hmax · Hn for the cover time by a
single random walk, and generalize the bound to show that k
random walks improve Matthews’ bound by a linear factor:

Theorem 13 (Baby Matthew Theorem). If G is a graph
on n vertices and k ≤ log n, then

Ck(G) ≤ e + o(1)

k
· hmax · Hn.

Proof. Let the starting vertex u of the k-walk be chosen.
Fix any other vertex v in the graph G. Recall, for any
two vertices u′, v′ in G, h(u′, v′) ≤ hmax. Thus by Markov
inequality, Pr[a random walk of length ehmax starting from
u does not hit v] ≤ 1/e. Hence for any integer r > 1,
the probability that a random walk of length erhmax does
not visit v is at most 1/er. (We can view the walk as r
independent trials to visit v.) Thus the probability that a
random k-walk of length erhmax starting from u does not
visit v is at most 1/ekr. Set r = ⌈(ln n + 2 ln ln n)/k⌉. Then
the probability that a random k-walk of length erhmax does
not visit v is at most 1/(n ln2 n). Thus with probability at
least 1 − (1/ ln2 n) a random k-walk visits all vertices of G
starting from u. Together with Matthews’ bound C(G) ≤
hmaxHn, we can bound the k-cover time of G by Ck(G) ≤
erhmax(1+1/ ln2)+C(G)/ ln2 n ≤ (e+o(1))hmaxHn/k. The
theorem follows. 2



When Matthews’ bound is tight, the cover time C(G) =
Θ(hmax log n), and the linear speed-up is an immediate corol-
lary of Theorem 13:

Theorem 4. If C(G) = Θ(hmax log n), then Sk(G) = Ω(k)
for all k ≤ log n.

When Matthews’ bound is not tight, the proofs become
more complex. We begin with the following result expressing
the k-walk cover time in terms of the single-walk cover and
hitting times:

Theorem 14. For any graph G of size n large enough and
for any function f(n) ∈ ω(1)

Ck(G) ≤ (1 + o(1))

k
· C(G) + (3 log k + 2f(n)) · hmax.

The proof is at the end of the section. In this case, we get
at least an order of linear speed-up when this upper bound
is dominated by the left term. Choosing f(n) sufficiently
small, informal calculation shows this happens when log k ·
hmax ≤ C/k or k log k ≤ C/hmax, which happens when k =
(C/hmax)

1−ǫ. Once again, when Matthews’ bound is tight
and C/hmax = log n we have the following approximation
to our previous result, which improves the linear speed-up
constant from 1/e to 1 at the cost of a slight reduction in
the choice of applicable k:

Corollary 15. If C = Θ(hmax log n) and k = O(log1−ǫ n)
for some ǫ < 1, then Ck = C

k
+o(C

k
), and Sk(G) ≥ k−o(k).

When Matthews’ bound is not tight, we have the following
result expressed directly in terms of the gap g(n) = C

hmax

between the cover time and the hitting time:

Theorem 5. If g(n) = C(G)
hmax

→ ∞ and k = O(g1−ǫ(n)) for

some ǫ < 1, then Ck(G) = C
k

+o(C
k
), and Sk(G) ≥ k−o(k).

Proof. Set f(n) ∈ ω(1) in Theorem 14 to be log(g(n)), and
the claim follows. 2

We now prove Theorem 14. Our main technical tool con-
ceptually different from our previous proofs is the following
lemma.

Lemma 16. Let G be a graph and u1, . . . , uk be some of
its vertices, not necessarily distinct. Let Tc and pc be such
that a random walk of length Tc starting from u1 visits all
vertices of G with probability at least pc. Let Th and ph

be such that for any two vertices u and v of G, a random
walk of length Th starting from u visits v with probability at
least ph. Let ℓ > 1 be an integer. Then a random k-walk of
length Tc/k + ℓTh starting from vertices u1, . . . , uk covers G
with probability at least pc(1 − k(1 − ph)ℓ).

Proof. The proof is conceptually simple. We introduce here
a little bit of notation to describe it formally. For a sequence
of vertices ~c = (c0, c1, . . . , ct) and a random walk X on G
starting from c0, ~c ⊑ X denotes the event

Vt
i=0 X(i) = ci.

For two sequences ~c = (c0, . . . , ct) and ~d = (d0, . . . , dt′),

where ct = d0 we denote by ~c ◦ ~d = (c0, . . . , ct, d1, . . . , dt′).
It is straightforward to verify, if X is a random walk start-
ing from c0 and Y is an independent random walk starting

from d0, then Pr[~c ⊑ X & ~d ⊑ Y ] = Pr[~c ◦ ~d ⊑ X]. Last, for
an integer m ≥ 1 and a sequence ~c = (c0, c1, . . . , ckm−1), ~ck,i

denotes the subsequence (c(i−1)m, . . . , cim−1) for 0 ≤ i ≤ k.

WLOG Tc is divisible by k. Clearly, the probability that
a random k-walk (X1, . . . , Xk) of length Tc/k + ℓTh on G
starting from vertices u1, . . . , uk covers all of G can be lower-
bounded by

p = Pr

2

4

_

~c,~h2,...,~hk

~ck,1 ⊑ X1 & ~h2 ◦ ~ck,2 ⊑ X2 & · · ·
~hk ◦ ~ck,k ⊑ Xk

3

5 ,

where ~c is taken from the set of all sequences of vertices
from G corresponding to walks of length Tc on G that start

in u1 and cover whole G, and ~hi is taken from the set of
all sequences of vertices from G corresponding to walks of
length at most ℓTh that start in ui and hit c(i−1)Tc/k for the
first time only at their end. It is easy to verify that all the
events in the union are disjoint. Hence,

p =
X

~c,~h2,...,~hk

Pr

"

~ck,1 ⊑ X1 & ~h2 ◦ ~ck,2 ⊑ X2 & · · ·
~hk ◦ ~ck,k ⊑ Xk

#

=
X

~c,~h2,...,~hk

Pr
h

~c ⊑ X1 & ~h2 ⊑ X2 & · · ·~hk ⊑ Xk

i

=
X

~c,~h2,...,~hk

Pr[~c ⊑ X1] · Pr[~h2 ⊑ X2] · · ·Pr[~hk ⊑ Xk]

=
X

~c

Pr[~c ⊑ X1] ·
X

~h2

Pr[~h2 ⊑ X2] · · ·
X

~hk

Pr[~hk ⊑ Xk],

where the third equality follows from the independence of
the walks. By our assumption

P

~c Pr[~c ⊑ X1] ≥ pc. Since
(1−a)(1−b) ≥ (1−a−b) for a, b ≤ 1, to conclude the lemma

it suffices to argue that
P

~hi
Pr[~hi ⊑ Xi] ≥ 1− (1− ph)ℓ for

all i. Notice that
P

~hi
Pr[~hi ⊑ Xi] = Pr[ a random walk of

length ℓTh starting from ui visits c(i−1)Tc/k]. Since a random
walk of length Th fails to visit c(i−1)Tc/k with probability at
most 1− ph regardless of its starting vertex, a random walk
of length ℓTh fails to visit c(i−1)Tc/k with probability at most

(1 − ph)ℓ. The lemma follows. 2

Next, we use the following bound on the concentration of
the cover time by Aldous [4]:

Theorem 17 ([4]). For the simple random walk on G, start-

ing at i, if Ci/hmax → ∞ then τi/Ci
p−→ 1.

Equipped with the proper tools we are ready to prove
Theorem 14.
Proof of Theorem 14. If the conditions of Theorem 17
do not hold then the cover time and hitting time are on
the same order and Theorem 14 gives a trivial (not tight)
upper bound. Assume the conditions of Theorem 17 holds.
Theorem 17 implies that Pr[τu/Cu > 1 + δn] ≤ ǫn where
δn, ǫn → 0 as the size of the graph goes to infinity. Thus
Pr[a random walk of length (1+o(1))·C covers G] ≥ 1−o(1).
By Markov bound, for a fixed vertex v of the graph, Pr[a
random walk of length 2hmax visits vertex v] ≥ 1/2. If we set
ℓ = log k + ω(1), then Lemma 16 implies that a random k-

walk of length L = (1+o(1))C
k

+ (log k + ω(1))2hmax covers G

with probability at least (1− o(1)) · (1− k2−ℓ) = (1− o(1)) ·
“

1 − 1
ω(1)

”

= 1−o(1). Here each of the k random walks may

start at a different vertex. Thus a walk of length i · L does
not cover G with probability at most [o(1)]i so the cover



time of G can be bounded by L
P

i i · [o(1)]i = L · 1
1−o(1)

=

L · (1 + o(1)). 2

4.1 Linear speed-up on expanders
In this section we prove that for the important special

case of expanders, there is a linear speed-up for k as large
as k ≤ n:

Theorem 18. If G is an expander, then the speed-up Sk(G) =
Ω(k) for k ≤ n.

An (n, d, λ)-graph is a d-regular graph G on n vertices
so that the absolute value of every nontrivial eigenvalue of
the adjacency matrix of G is at most λ. It is well known
(see [6]) that a d-regular graph on n vertices (with a loop in
every vertex) is an expander (that is, any set X of at most
half the vertices has at least c|X| neighbors outside the set,
where c > 0 is bounded away from zero), if and only if there
is a fixed λ bounded away from d so that G is an (n, d, λ)-
graph. Since the rate of convergence of a random walk to a
uniform distribution is determined by the spectral proper-
ties of the graph it will be convenient to use this equivalence
and prove that random walks on (n, d, λ)-graphs, where λ
is bounded away from d, achieve linear speed up. In what
follows we make no attempt to optimize the absolute con-
stants, and omit all floor and ceiling signs whenever these
are not crucial.

Lemma 19. Let G be an (n, d, λ)-graph. Put s = ln(2n)
ln(d/λ)

and b = λ
d−λ

. Then, for every two vertices u, v of G, the
probability that a random walk of length 2s starting at u,
covers v is at least s

2n+4s+4bn
.

Proof. For each i, s < i ≤ 2s, let Yi be the indicator random
variable whose value is 1 iff the walk starting at u visits v
at step number i. Let Y =

P2s
i=s+1 Yi be the number of

times the walk visits v during its last s steps. Our objective
is to show that the probability that Y is positive is at least

s
2n+4s+4bn

. To do so, we estimate the expectation of Y and

of Y 2 and use the fact that by Cauchy-Schwartz

Pr[Y > 0] =
X

j>0

Pr[Y = j] ≥
(
P

j>0 jPr[Y = j])2
P

j>0 j2Pr[Y = j]

=
(E(Y ))2

E(Y 2)

(1)

By linearity of expectation E(Y ) =
P2s

i=s+1 E(Yi). The
expectation of Yi is the probability the walk visits v at step i.
This is precisely the value of the coordinate corresponding
to v in the vector Aiz, where A is the stochastic matrix of
the random walk, that is the adjacency matrix of G divided
by d, and z is the vector with 1 in the coordinate u and 0 in
every other coordinate. Writing z as a sum of the constant
1/n-vector z1 and a vector z2 whose sum of coordinates is 0,
and using the fact that Az1 = z1 and that the ℓ2-norm of
Aiz2 satisfies ||Aiz2|| ≤ (λ

d
)i we conclude, by the definition

of s, that each coordinate of Aiz deviates from 1/n by at
most 1

2n
.

It thus follows that

E(Y ) ≥ s

2n
. (2)

By linearity of expectation

E(Y 2) =
2s
X

i=s+1

E(Yi) + 2
X

s<i<j≤2s

E(YiYj)

Note that E(YiYj) is precisely the probability that the walk
visits v at step i and at step j. This is the probability that
it visits v at step i, times the conditional probability that
it visits v at step j given that it visits it at step i. This
conditional probability can be estimated as before, showing
that it deviates from 1/n by at most (λ/d)j−i. It thus follows
that

E(Y 2) ≤ E(Y ) + 2
2s
X

i=s+1

E(Yi)(
s

n
+
X

r>0

(λ/d)r)

≤ E(Y )[1 +
2s

n
+ 2

λ

d − λ
].

(3)

Plugging the estimates (2) and (3) in (1) we conclude that

Pr[Y > 0] ≥ (E(Y ))2

E(Y )[1 + 2s/n + 2λ/(d − λ)]

≥ s/(2n)

1 + 2s/n + 2b
=

s

2n + 4s + 4bn
.

This completes the proof. 2

Corollary 20. Let G be an (n, d, λ)-graph and define s =
ln(2n)
ln(d/λ)

, b = λ
d−λ

. Suppose n ≥ 2s, and let k be an integer

so that 16(b+1)n ln n
k

> 2s. For any two fixed vertices u and v
of G, the probability that v is not covered by at least one
of k independent random walks starting at u, each of length

t = 16(b+1)n ln n
k

, is smaller than 1
n2 .

Proof. Break each of the walks into t
2s

sub-walks, each of
length 2s. By Lemma 19, for each of these sub-walks, the
probability it covers v is at least s

2n+4s+4bn
≥ s

4(b+1)n
. Note

that this estimate holds for each specific sub-walk, even after
we expose all previous sub-walks, as given this information
it is still a random walk of length 2s starting at some vertex
of G, and this initial vertex is known once the previous sub-
walks are exposed. It follows that the probability that v is
not covered is at most

(1 − s

4(b + 1)n
)kt/2s < e−kt/(8(b+1)n = e−2 ln n =

1

n2
,

as needed. 2

In the notation of the above corollary, the k random walks
of length t starting at u cover the whole expander with prob-
ability at least 1 − 1/n. Since the usual cover time of the
expander is O(n lnn) it follows that the expected length
of the walks until they cover the graph does not exceed
t + 1

n
O(n lnn) ≤ O(t).

Note that for every fixed b, the total length of all k walks
in the last corollary is O(n lnn), and that the assumption
16(b+1)n ln n

k
> 2s = 2 ln(2n)

ln(d/λ)
holds for every k which does

not exceed b′n for some absolute constant b′ depending only
on b (as d/λ = 1 + 1/b). This shows that k random walks
on n-vertex expanders achieve speed-up Ω(k) for all k ≤ n.



5. SPEED-UP AND MIXING TIME
Random walks on expanders converge rapidly to the sta-

tionary distribution. For graphs with fast mixing times, like
expanders, the following theorem gives a second bound on
the speed-up in terms of mixing time.

Theorem 9. Let G be a d-regular graph. If the mixing time
of G is tm then for k ≤ n the speed-up is Sk = Ω( k

tm ln n
)

Proof. Let G be a d-regular graph of size n. We show
that the expected cover time of G by a random k-walk is

O( tmn ln2 n
k

). As a cover time of any graph is at least n ln n
the theorem follows.

In this proof we represent a random k-walk on G by an in-
finite sequence of random variables X0, X1, . . . , where Xi is
the position of the 1 + (imod k)-th token at step ⌊i/k⌋ + 1.
Define the random variables Yi = X⌊i/k⌋k·6tm ln n+(i mod k).
Hence, Yi’s correspond to the position of the k-walk after
every 6tm lnn steps. Let a random variable Y ′

i be Yi con-
ditioned on a specific outcome of Y0, . . . , Yi−k. Since tm is
the mixing time of G and the stationary distribution of a
random walk on G is uniform (G is d-regular), the statisti-
cal distance of Y ′

i from the uniform distribution on G is at
most (1/e)6 lnn ≤ 1/n6. In particular, for any vertex v of G,
|Pr[Y ′

i = v] − 1/n| ≤ 1/n6.
Thus, for any 1 < ℓ ≤ n3 and any sequence v1, . . . , vℓ of

vertices

(1/n − /n6)ℓ ≤ Pr[Y ′
1Y ′

2 · · ·Y ′
ℓ = v1 · · · vℓ] ≤ (1/n + 1/n6)ℓ

Hence,

1/nℓ·(1−1/n2) ≤ Pr[Y ′
1Y ′

2 · · · Y ′
ℓ = v1 · · · vℓ] ≤ 1/nℓ·(1+2/n2).

One can easily show (see the proof of Theorem 26) that
the probability that a clique of size n is not covered within
10n ln n steps by a random 1-walk is at most 1/n9. By the
above bound distribution of Y ′

1Y ′
2 · · ·Y ′

ℓ , for 1 < ℓ ≤ n3 is
close to a distribution of a random walk on a clique. Hence,
unless Y ′

1 , Y ′
2 , . . . , Y ′

10n lnn does not hit all the vertices of G,
we can bound the expected cover time of G by (6tm ln n) ·
Ck(Kn) · (1 + 2/n2). If Y ′

1 , Y ′
2 , . . . , Y ′

10n ln n does not hit all
the vertices of G we can bound the cover time of G by the
trivial bound O(n3). Since Ck(Kn) = O(n ln n/k) the claim
follows. 2

6. LOGARITHMIC SPEED-UP
So far we have seen only cases where the speed-up in cover

time achieved by multiple random walks is considerable, i.e.,
at least linear. In this section we show that this is not always
the case and that the speed-up may be as low as logarithmic
in k. The cover time of a cycle Ln on n vertices is Θ(n2).
We prove the following claim.

Theorem 6. For any integer n and k < en/4, the speed-up
on the cycle with n vertices is Sk(Ln) = Θ(log k).

Hence for a cycle even a moderate speed-up of ω(log n) re-
quires super-polynomially many walks, and to achieve speed-
up of nǫ one requires 2Ω(nǫ) walks. The theorem follows from
the following two lemmas.

Lemma 21. Let s > 1 and k ≥ 1 be such that Ck ≤ n2/s

for a cycle of length n. Then k ≥ es/16/8.

Proof. Assume that Ck ≤ n2/s and we will prove that k ≥
es/16/8. Pick an arbitrary vertex v of the graph. Clearly,
the cover time starting from the vertex v is Ck

v ≤ n2/s. Let
a random variable Tv be the cover time of a random k-walk
starting from v. By Markov inequality, Pr[Tv ≥ 2n2/s] ≤
1/2. Hence, with probability at least 1/2 one of the k walks
reaches the vertex vn/2 that is at distance n/2 from v in

at most 2n2/s steps. For a single walk, if it reaches vn/2

starting from v in time at most 2n2/s, then there is 1 ≤
t ≤ 2n2/s so that the number of its steps to the right until
time t differs from the number of its steps to the left by at
least n/2. Given that this happens, with probability 1/2 the
number of steps to the right will differ from the number of
steps to the left by at least n/2 also at time 2n2/s. This
is because after time t we will increase the difference with
the same probability as that we will decrease it since the
probability of going to the left is the same as the probability
of going to the right. By Chernoff bound, Pr[the number
of steps to the left and to the right of a walk differs by at

least n/2 at time 2n2/s] ≤ 2e
− s·n2

16n2 ≤ 2e−s/16. Hence, the
probability that a particular walk reaches the vertex vn/2

during 2n2/s steps is at most 4e−s/16.
Thus, Pr[there exists a walk that reaches vn/2 in time at

most 2n2/s] ≤ 4k · e−s/16. Since this probability must be at

least 1/2 we conclude that es/16

8
≤ k. 2

Lemma 22. Let k be large enough and n be an integer. If
k ≤ en/4 then Ck ≤ 2n2/ ln k for a cycle of length n.

To prove this lemma we need the following folklore state-
ment (see the appendix for the proof).

Proposition 23. Let c ≥ 2 be a constant. For every even
integer n ≥ 16c2,

e−3c2−4 ≤ Pr[(c − 1)
√

n ≤ X − n/2 ≤ c
√

n] ≤ e−2(c−1)2 ,

where X is a sum of n independent 0-1 random variables
that are 1 with probability 1/2.

Proof of Lemma 22. To prove that Ck ≤ 2n2

ln k
, let c =√

ln k/2 and ℓ = n2/4(c − 1)2. If a single walk during a
random k-walk of length ℓ on a cycle of length n makes in
total at least ℓ/2 + n/2 steps to the right then it traversed

around the whole cycle. Note, n/2 =
√

ℓ(c − 1). By the
previous proposition, Pr[a single walk makes at least ℓ/2 +
n/2 steps to the right during a random walk of length ℓ] ≥
e−3c2−4 ≥ 1/k, for k large enough. Hence, k walks walking
in parallel at random for ℓ steps fail to cover the whole cycle
of length n with probability at most (1−1/k)k < 1/e. Thus
Ck ≤P∞

i=0
1
ei ℓ = eℓ/(e− 1) ≤ 2n2/ ln k, for k large enough.

2

Lemma 21 also implies the following claim.

Theorem 24. Let Gn,d be a d-dimensional grid (torus) on

n1/d×n1/d×· · ·n1/d vertices, d ≥ 2. For any k, Ck(Gn,d) ≥
Ω(n2/d/ log k).

Proof. We prove the claim for d = 2. The other cases are
analogous. Consider the random k-walk on a

√
n×√

n grid
(torus). We can project the position of each of the k walks
to the x axis. This will give a distribution identical to a k-
walk on a cycle of size

√
n where in each step we make a



vc

B13

Figure 1: Example barbell graph B13, vc is the center
of the barbell

step to the left with probability 1/4, step to the right with
probability 1/4 and with the remaining probability 1/2 we
stay at the current vertex. In order for a k-walk to cover the
whole grid, this projected walk must cover the whole cycle.
Thus the expected cover time of the grid must be lower-
bounded by the expected cover time for a cycle of size

√
n

which is Ω(n/ log k) by Lemma 21. (Note the steps in which
we stay at the same vertex can only increase the cover time.)

2

Corollary 25. For a 2-dimensional grid Gn,2, Sk(Gn,2) ≤
O(log2 n log k).

This corollary together with Theorem 4 implies Theo-
rem 8.

7. EXPONENTIAL SPEED-UP
On some graphs the speed-up can be exponential in k for

at least some choice of the starting point. For an odd integer
n > 1, we define a barbell graph Bn to be a graph consisting
of two cliques of size (n−1)/2 connected by a path of length 2
(see Figure 1). The vertex on that paths is called the center
of Bn and the cliques are called bells. The expected time to
cover Bn by a random walk is Θ(n2) since once the token is
in one of the cliques it takes on average Θ(n2) steps to exit
that clique. It can be shown that the maximum cover time is
attained by starting the random walk from the center of Bn.
We show the following theorem.

Theorem 26. Let n > 1 be an odd integer, vc be the center
of Bn and k = 20 ln n. The expected cover time starting
from vc satisfies Ck

vc
= O(n).

Hence, the speed-up in a cover time starting from a par-
ticular vertex of a k-random walk compared to a random
walk by a single token may be substantially larger than k.
In the case of Bn the speed-up is Ω(n) for O(log n)-walks
for walks starting at a particular vertex.

Proof. With high probability none of the following three
events happens:

E1 In one of the bells there are less than 4 ln n tokens after
the first step.

E2 During the first 10n steps of the random k-walk at
least 2 ln n vertices return to the center.

E3 One of the bells is not covered within the first 10n
steps.

If none of the above events happens then each of the bells
is explored by at least 2 ln n tokens. Two disjoint cliques of
size m = (n−1)/2 are each covered by a random 2 ln n-walk
in expected time 2C2 ln n(Km), by Lemma 12. So if C is the
expected cover time of Bn by a random 1-walk then:

Ck
vc

≤ 2C2 ln n(Km) + Pr[(1)]C + Pr[E2 ∪ E3](10n + C).

We need to estimate the probabilities of the above events.
By Chernoff bound,

Pr[E1] ≤ 2e−(16 ln n)2/2·20 ln n < 1/n5

for n large enough. A single token returns to the center of Bn

within 10n steps with probability at most 1
n

+ 10n
m(m+1)

< 22
m

.

The probability that at least 2 ln n vertices return to the
center is then < 220 ln n · (22/m)2 lnn < 1/n5, for n large
enough. Finally, the probability that a random 2 ln n-walk
does not cover a clique of size m in 10n steps is at most
m(1− 1

m
)20n ln n ≤ me−10 ln n < 1/n5. Now since C = O(n2)

and C2 ln n(Km) = O(n), we get Ck
vc

= O(n). 2

8. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we have shown that many random walks

can be faster than one, sometimes much faster. Our main
result is that a linear speed-up is possible on a large class of
interesting graphs—including complete graphs, expanders,
grids, hypercubes, balanced trees, and random graphs—in
the sense that k ≤ log n random walks can cover an n-node
graph k times faster than a single random walk. In the case
of expanders, we obtain a linear speed-up even when k is as
large as n. Our technique is to relate the expected cover time
for k random walks to the expected cover and hitting times
for a single random walk; and to observe that if there is a
large gap between the single-walk cover and hitting times,
then a linear speed-up is possible using multiple random
walks. Using a different technique, we were able to bound
the k-walk cover time in terms of the mixing time as well.

Open problems abound, despite of the progress reported
here. There are the standard questions concerning improv-
ing bounds. Is it possible that the speed-up is always at
most k? Our single counter example was that multiple ran-
dom walks starting at the center of the barbell achieved an
exponential speed-up, but perhaps the speed-up is limited
to k if we start at other nodes. Is it possible that the speed-
up is always at least log k? We have shown that the speed-up
is log k on the ring, and we conjecture this is possible on any
graph.

Another source of open problems is to consider more gen-
eral classes of graphs. Said in another way, our approach
has been to relate the k-walk cover time to the single-walk
hitting time and mixing time, but is there another prop-
erty of a graph that more crisply characterizes the speed-up
achieved by multiple random walks?
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APPENDIX

A. BOUNDING LARGE DEVIATION

Proposition 23. Let c ≥ 2 be a constant. For every even
integer n ≥ 16c2,

e−3c2−4 ≤ Pr[(c − 1)
√

n ≤ X − n/2 ≤ c
√

n] ≤ e−2(c−1)2 ,

where X is a sum of n independent 0-1 random variables
that are 1 with probability 1/2.

Proof. The upper bound follows from Chernoff bound. The
lower bound can be derived as follows. Pr[(c − 1)

√
n ≤

X −n/2 ≤ c
√

n] =
Pc

√
n

k=(c−1)
√

n
Pr[X −n/2 = k]. For any k,

Pr[X − n/2 = k] =
`

n
n/2+k

´

/2n. We will compare
`

n
n/2+k

´

with the central binomial coefficient
`

n
n/2

´

.

`

n
n/2

´

`

n
n/2+c

√
n

´ = Π
n/2
j=1

(n − j + 1)

j
· Πn/2+c

√
n

j=1

j

(n − j + 1)

= Π
n/2+c

√
n

j=n/2+1

j

(n − j + 1)

= Πc
√

n
j=1

1 + 2
n
j

(1 − 2
n
(j + 1))

.

We upper-bound this ratio as follows:

Πc
√

n
j=1 (1 +

2

n
j) ≤ e

2
n

Pc
√

n
j=1 j

= e
2
n
· c

√
n(c

√
n+1)

2

≤ ec2+1.

Now, for 0 ≤ x ≤ 1/2, e−2x ≤ 1 − x. Hence,

Πc
√

n
j=1 (1 − 2

n
(j + 1)) ≥ e−

4
n

Pc
√

n
j=1 (j+1)

≥ e−
4
n
· (c

√
n+1)(c

√
n+2)

2

≥ e−2c2−2.

Thus
`

n
n/2

´

`

n
n/2+c

√
n

´ ≤ e3c2+3.

Using estimates on Stirling’s formula
`

n
n/2

´

≥
q

2
eπn

· 2n, we

conclude that

c
√

n
X

k=(c−1)
√

n

 

n

n/2 + k

!

≥
 

n

n/2

!

√
ne−3c2−3 ≥ e−3c2−4 · 2n.

The lemma follows. 2


